

Power Series:- A series of the type $\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}$ is called a power series about the point x_{0}.
In genial, a series of the type $\sum_{n=0}^{\infty} a_{n} x^{n}$ is called a Power series about the point $x_{0}=0$.
Radius of Convergence (ROC):- If $\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}$ is a prover series. Then its
radius of convergence about point x_{0} is defined as.

$$
R=\frac{1}{l} \text { where } l=\lim _{n \rightarrow \infty} \sup \left|a_{n}\right|^{1 / n}
$$

OR. $R=\lim _{n \rightarrow \infty}\left|\frac{a_{n}}{a_{n+1}}\right| \$ l=\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|$

* If R be the $R O C$ of the power series $\sum_{n=0}^{\infty} a_{n} x^{n}$ then $R O C$ of $\sum_{n=0}^{\infty} a_{n} x^{\alpha n}$ is $(R)^{1 / \alpha}$

Que: Find $R O C$ of power series $\sum_{n=1}^{\infty} \frac{n}{n+1} x^{n}$ is.
a) 1
b) 2
C) 3
d) 4 .

San: Here $a_{n}=\frac{n}{n+1}$

$$
\begin{aligned}
& R=\lim _{n \rightarrow \infty}\left|\frac{\frac{n}{n+1}}{\frac{n+1}{n+2}}\right|=\operatorname{lt}_{n \rightarrow \infty}\left|\frac{n(n+2)}{(n+1)^{2}}\right|=\operatorname{lt}_{n \rightarrow \infty} \frac{n^{2}\left[1+\frac{2}{n}\right]}{n^{2}\left[1+\frac{1}{n}\right]^{2}} \\
& R=\operatorname{lt}_{n \rightarrow \infty} \frac{\left[1+\frac{2}{n}\right]}{\left[1+\frac{1}{n}\right]^{2}}=1 .
\end{aligned}
$$

\therefore option (a) is true.

OR.

$$
\begin{aligned}
R= & \frac{1}{l} \text { when } l=\lim _{n \rightarrow \infty} \sup \left|a_{n}\right|^{1 / n} \\
l & =\lim _{n \rightarrow \infty} \sup \left|\frac{n}{n+1}\right|^{1 / n} \\
l & =\lim _{n \rightarrow \infty} \sup , \frac{|n|^{1 / n}}{(1+n)^{1 / n}}=\frac{1}{1}=1 \\
\therefore & R=1 .
\end{aligned}
$$

Que: The radius of convergence of power series $\sum_{n=1}^{\infty}\left(\frac{n+2}{n}\right) x^{n}$ is
a) 文
b) $1 / \sqrt{2}$
C) $1 / 2$
d) $1 \mathrm{c}^{2}$

Sol ${ }^{n}$: Were $a_{n}=\frac{n+2}{n}$

$$
\begin{aligned}
& \text { Were } a_{n}=\frac{n+2}{n} \\
& R=\lim _{n \rightarrow \infty}\left|\frac{a_{n}}{a_{n+1}}\right|=\operatorname{lt}_{n \rightarrow \infty}\left|\frac{\frac{n+2}{n}}{\frac{n+3}{n+1}}\right|^{n^{2}}=l_{n \rightarrow \infty} \frac{(n+2)(n+1)}{n(n+1)} \\
& =\operatorname{lt}_{n \rightarrow \infty} \frac{n^{2}\left[1+\frac{2}{n}\right]\left[1+\frac{1}{n}\right]}{n^{2}\left[1+\frac{1}{n}\right]}=1 \text { anu }
\end{aligned}
$$

Que: Find ROC of $\sum_{n=1}^{\infty}\left(\frac{n+2}{n}\right)^{n^{2}} x^{n} \quad\{[$ JAM -2020]
ale
b) $1 / \sqrt{e}$
C) $1 / e$
d) $1 / e^{2}$

Sow: there $a_{n}=\left(\frac{n+2}{n}\right)^{n^{2}}$

$$
\begin{aligned}
R & =\frac{1}{l} \text { ewhere } l=\operatorname{lt}_{n \rightarrow \infty} \sup \left|a_{n}\right|^{1 / n} \\
l & =\operatorname{lt}_{n \rightarrow \infty} \sup \left|\left(\frac{n+2}{n}\right)^{n 2}\right|^{1 / n} \\
& =\operatorname{lt}_{n \rightarrow \infty} \sup \left|\frac{n+2}{n}\right|^{n}=\operatorname{lt}_{n \rightarrow \infty} \sup \left|1+\frac{2}{n}\right|^{n} \\
l & =e^{2} \quad\left\{\left[\text { as } \operatorname{lt}_{n \rightarrow \infty}\left(1+\frac{a}{n}\right)^{n}=e^{a}\right]\right. \\
\therefore \quad R & =1 / e^{2} \quad \text { Ans }
\end{aligned}
$$

$R=4$ Put the given series of flower sn then ROC of series (is) $(4)^{1 / 5}=\sqrt[5]{4}$
\therefore option (b) is true.
OR $\quad R=\frac{1}{\ell}$

$$
\begin{aligned}
& l=l_{n \rightarrow \infty}^{l} \sup \left|\frac{n^{3}}{4^{n}}\right|^{1 / n}=\operatorname{lt}_{n \rightarrow \infty}\left|\frac{n^{3 / n}}{4}\right| \\
& l=\frac{1}{4}\left\{\left[\because \operatorname{lt}_{n \rightarrow \infty} n^{1 / n}=1\right]\right. \\
& \therefore R=4 \Rightarrow R O C . \delta \mid \text { sexes is } \sqrt[5]{4} .
\end{aligned}
$$

Sue: The 'i' be ROC of power series $\frac{1}{3}+\frac{x}{5}+\frac{x^{2}}{3^{2}}+\frac{x^{3}}{5^{2}}+\frac{x^{4}}{3^{3}}+\frac{x^{5}}{5^{3}}+\cdots$ then the value of π^{2} is equal to $-\{[\mathrm{JAM}-2022]$.
Sol 1^{n} :

$$
\begin{aligned}
& \left(\frac{1}{3}+\frac{x^{2}}{3^{d}}+\frac{x^{4}}{3^{3}}+\frac{x^{6}}{3^{4}}+\cdots\right)+\left(\frac{x}{5}+\frac{x^{3}}{5^{2}}+\frac{x^{5}}{5^{3}}+\cdots\right) \\
= & \sum_{n=0}^{\infty} \frac{x^{2 n}}{3^{n+1}}+\sum_{n=1}^{\infty} \frac{1}{5^{n}} x^{2 n-1} \\
& 4 R O C=R_{1} \quad G R O C=R_{d}
\end{aligned}
$$

Now $\sum_{n=1}^{\infty} \frac{1}{5^{n}} x^{2 n-1}=1_{2}$

$$
R_{2}=\operatorname{lt}_{n \rightarrow \infty}\left|\frac{1}{5^{n}} \times 5^{n+1}\right|=5
$$

ROC of P_{2} is $R_{2}=(5)^{1 / 2}$
So Overall prover series 's $R O C$ will be ' r ' $=\operatorname{prin}\left(R_{1}, R_{2}\right)$

$$
r=\sqrt{3}
$$

$$
\therefore r^{2}=3 \text { Arm }
$$

Interval of Convergence:- The set of values of x for which power series is cit is called IOC or region ofonng.
ie. $\left|x-x_{0}\right|<R \Rightarrow\left(x_{0} \uparrow R, x_{0}+R\right)$ is called IOC
Note: (i) If $R=\infty$ then power series converges $\forall x$
(ii) If $R=0$ then power series converges for only $x=0$
(iii) of $0<R<\infty$ then power series converges $\forall|x|<R$ and ding $|x|>F$ e or $\left|x-x_{0}\right|<R$
(iv) If $\left|x-x_{0}\right|=R$ then proven series may or may not converges.

Que: Find IOC of power series $\sum_{n=1}^{\infty} \frac{3}{n 4^{n}}(x+1)^{n}$ is
a) $-4 \leq x<2$
b) $-4 \leq x \leq 2$
C) $-5 \leq x<3$
d) $-5 \leq x \leq 3$

$$
\begin{aligned}
& a_{n}=\frac{3}{n 4^{n}} \\
& l=\left.\operatorname{lt}_{n \rightarrow \infty}|x| \frac{3}{n 4^{n}}\right|^{1 / n}=\operatorname{lt}_{n \rightarrow \infty} \sup \left[\left(\frac{3}{n}\right)^{1 / n}\right]=\frac{1}{4}
\end{aligned}
$$

$\frac{1}{\ell}=R=4<\infty$ thus IOC civil be $|x-(-1)|<4$

$$
\begin{aligned}
& \Rightarrow|x+1|<4 \\
\Rightarrow & -4<x+1<4 \\
\Rightarrow & -5<x<3
\end{aligned}
$$

Now at $x=-5$ series will be $\sum_{n=1}^{\infty} \frac{3}{n 4^{n}}(-4)^{n}=\sum_{n=1}^{\infty} \frac{3}{n} \frac{1}{4^{n}}(-1)^{n} 4^{n}=\sum_{n=1}^{\infty} \frac{3}{n}(-1)$
By Lébnitz's test: (i) $a_{n}>a_{n+1} \Rightarrow \frac{3}{n}>\frac{3}{n+1}$
(ii) $\lim _{n \rightarrow \infty} a_{n}=0$

Thus the series os Cgt at $x=5$.
Now at $x=3$ senies will be $\sum_{n=1}^{\infty} \frac{3}{n}$
By p-senis test $\sum \frac{1}{n} p$ is cgt iff $p \geqslant 2$
\therefore senss is not cgt at $x=3$
thes, IOC is $-5 \leq x<3$. option (C) is true.
Que: Find the IOC of power series $\left.\sum_{n=1}^{\infty} \frac{1}{(-3)^{n+2}} \frac{(4 x-12)^{n}}{n^{2}+1} \cdot\right\}[$ JAM-2017]
a) $\frac{10}{4} \leq x \leq \frac{14}{4}$
b) $\frac{10}{4} \leq x<\frac{14}{4}$
C) $\frac{9}{4} \leq x<\frac{15}{4}$
d) $\frac{9}{4} \leq x \leq \frac{15}{4}$.

$$
\begin{aligned}
& \sum_{n=1}^{\infty} \frac{1}{(-3)^{n+2}} 4^{n} \frac{(x-3)^{n}}{n^{2}+1}=\sum_{n=1}^{\infty} \frac{4^{n}(x-3)^{n}}{9(-3)^{n}\left(n^{2}+1\right)} \\
& \therefore a_{n}=\frac{1}{9}\left(-\frac{4}{3}\right)^{n} \cdot \frac{1}{n^{2}+1} \\
& \ell=\lim _{n \rightarrow \infty} \sup \left|a_{n}\right|^{1 / n}=\operatorname{ltt}_{n \rightarrow \infty}\left|\frac{1}{9}\left(-\frac{4}{3}\right)^{n} \frac{1}{n^{2}+1}\right|^{1 / n} \\
& \left.\left.=\frac{4}{3} \operatorname{lit}_{n \rightarrow \infty} \operatorname{sip}\left|\frac{1}{(9)^{1 / n}} \frac{1}{\left(n^{2}+1\right)^{1 / n}}\right|=\frac{4}{3} \operatorname{ltt}_{n \rightarrow \infty} \right\rvert\, \frac{1}{(9)^{1 / n}} \frac{1}{n^{2 / n}\left(1+\frac{1}{n}\right)^{1 / n}}\right] \\
& \text { as } \operatorname{ltt}_{n \rightarrow \infty}(a)^{1 / n}=1 \\
& \therefore l=\frac{4}{3} \Rightarrow R=\frac{3}{4}
\end{aligned}
$$

IOC $\quad|x-3|<R \Rightarrow|x-3|<\frac{3}{4} \Rightarrow \frac{9}{4}<x<\frac{15}{4}$
Now at $\frac{9}{4}=x$, sheres will be $\sum_{n=1}^{\infty} \frac{(-3)^{n}}{(-3)^{n+2}} \cdot \frac{1}{n^{2}+1}=\sum_{n=1}^{\infty} \frac{1}{9\left(n^{2}+1\right)}$ which is at $x=\frac{15}{4}$ senis will be $\sum \frac{(-1)^{n}}{9} \cdot \frac{1}{n^{2}+1}$ which is cgt by leibniti'slest
\therefore IOC will be $\frac{9}{4} \leq x \leq \frac{15}{4}$
So, option (D) is correct.

Note: (i) If a power series $\sum a_{n} x^{n}$ converges for $x=\alpha$ then it is absolutely convergent for every $x=x_{1}$ when $\left|x_{1}\right|<|\alpha|$.
(ii) If a power series. $E a_{n} x^{n}$ diverges for $x=x$ ' then it or a div for every $x=x^{\prime \prime}$ when $\left|x^{\prime \prime}\right|>\left|x^{\prime}\right|$.
(iii) If $\sum a_{n}\left(x-x_{0}\right)^{n}$ is cgt for $x=\alpha$ then it is absolutely gt

$$
\forall x \text { sit. }\left|x-x_{0}\right|<\left|\alpha-x_{0}\right|
$$

: Let $\left(a_{n}\right)$ be a sequence of Real numbers s. t. the series $\sum_{n=0}^{\infty} a_{n}(x-2)$ converges at $x=-5$, then tais series also converges at.
a) $x=-6$,
b) $=12$
C) $x=a$
d): $x=5$
as $\quad x=-5=\alpha$

$$
\begin{aligned}
& \therefore\left|x-x_{0}\right|>\left|\alpha-x_{0}\right| \\
& \Rightarrow|x-2|>|-5-2| \\
& \Rightarrow|x-2|>|-7| \\
& \Rightarrow|x-2|>7 \\
& \Rightarrow-5<x<9 \text { gt. only } x=5 \text { is } \in(-5,9)
\end{aligned}
$$

\therefore option (d) is true.

