Power Series: - A series of the type \(\sum_{n=0}^{\infty} an (\chi-\chi_0)^n\) is called a power series about the point Xo.

In general, a series of the type $\sum_{n=0}^{\infty}a_nx^n$ is called a Power series about the point xo=0.

Radius of Convergence (ROC) ?- 9/ \(\sum_{n=0}^{\infty} \an(x-x_0)^n\) is a power series. Then its radius of convergence about point to is defined as.

$$R = \frac{1}{l}$$
 where $l = \lim_{n \to \infty} \sup_{n \to \infty} |\alpha_n|^{n}$

of
$$R = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right| + \left| \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|$$

* 9 R be the ROC of the power series \(\sum_{n=0}^{\infty} \an\chi^n\) then ROC of \(\sum_{n=0}^{\infty} \an\chi^n\) is (R)

Due: Find ROC of power series $\sum_{n=1}^{\infty} \frac{n}{n+1} \chi^n$ is.

Here $a_n = \frac{n}{n+1}$

$$R = \lim_{n \to \infty} \left| \frac{n}{\frac{n+1}{n+a}} \right| = \underbrace{H}_{n \to \infty} \left| \frac{n(n+a)}{(n+1)a} \right| = \underbrace{H}_{n \to \infty} \frac{n^{2} \left[1 + \frac{a}{n}\right]}{n^{2} \left[1 + \frac{1}{n}\right]^{2}}$$

$$R = \underbrace{It}_{n \to \infty} \underbrace{\left[\frac{1 + \frac{9}{n}}{n} \right]}_{\left[\frac{1 + \frac{9}{n}}{n} \right]^{\frac{9}{n}}} = 1$$

.. option (a) is true.

OR:
$$R = \frac{1}{L}$$
 where $L = \lim_{n \to \infty} |\Delta up| |a_n|^{n}$
 $L = \lim_{n \to \infty} |\Delta up| \frac{n}{n+1}|^{n}$
 $L = \lim_{n \to \infty} |\Delta up| = \lim$

· R= 1/es Am

$$R = \frac{1}{n+\infty} \left| \frac{\alpha n}{\alpha n+1} \right|^{2} = \frac{n^{3}}{4^{n}} = \frac{1}{n+\infty} = \frac{1}{(n+1)^{3}} = \frac{1}{n+\infty} \frac{4^{n}}{(n+1)^{3}} = \frac{1}{n+\infty} \frac{4^{n}}{(n+1)^{3}}$$

$$R = \frac{1}{\ell}$$

$$\ell = \ell t \quad \text{sup} \left[\frac{n^3}{4^n} \right]^{n} = \ell t \quad \frac{n^{3/n}}{4}$$

$$n + \infty \quad \left[\frac{n^3}{4^n} \right]^{n} = \frac{n^{100}}{4^n} \left[\frac{n^{3/n}}{4^n} \right]$$

$$\ell = \frac{1}{4} \left\{ \left[\begin{array}{c} \cdot \cdot \cdot \\ \cdot \\ \cdot \cdot \\ \cdot \\ \cdot \\ \cdot \cdot \\ \cdot$$

The it be ROC of power series $\frac{1}{3} + \frac{\chi}{5} + \frac{\chi^3}{3^2} + \frac{\chi^3}{5^3} + \frac{\chi^4}{5^3} + \frac{\chi^5}{5^3} + \cdots$ then the value of Λ^3 is equal to - [JAM-2022].

$$\frac{101^{n}}{3} : \left(\frac{1}{3} + \frac{\chi^{2}}{3^{3}} + \frac{\chi^{4}}{3^{3}} + \frac{\chi^{6}}{3^{4}} + - - \right) + \left(\frac{\chi}{5} + \frac{\chi^{3}}{5^{3}} + \frac{\chi^{5}}{5^{3}} + - - \right) \\
= \frac{80}{5} \chi^{2n} + \frac{5}{3^{3}} + \frac{2}{3^{3}} + \frac{\chi^{6}}{3^{4}} + - - \right) + \left(\frac{\chi}{5} + \frac{\chi^{3}}{5^{3}} + \frac{\chi^{5}}{5^{3}} + - - \right) \\
= \frac{80}{5} \chi^{2n} + \frac{2}{3^{3}} + \frac{\chi^{6}}{3^{4}} + - - \frac{1}{5^{4}} + \frac{\chi^{3}}{5^{3}} + \frac{\chi^{5}}{5^{3}} + - - \right)$$

$$= \sum_{n=0}^{\infty} \frac{\chi^{2n}}{3^{n+1}} + \sum_{n=1}^{\infty} \frac{1}{5^n} \chi^{2n-1}$$

$$4 ROC=R_1$$

Now
$$\sum_{n=1}^{\infty} \frac{1}{5^n} x^{2n-1} = \frac{1}{5}$$

Ra = $\frac{1}{5^n} \frac{1}{5^n} x^{5^{n+1}} = 5$

Roc of P_a is $P_a = \frac{1}{5^n} x^{5^{n+1}} = 5$

Roc of P_a is $P_a = \frac{1}{5^n} x^{5^{n+1}} = 5$

Roc of P_a is $P_a = \frac{1}{5^n} x^{5^{n+1}} = 5$

As Overly forms series 's ROC will be 'h' = Min ($P_a = \frac{1}{5^n} x^{5^{n+1}} = \frac{1}{5^n} x^{5^{$

Thus the series is Cgt at 2=5. Now at x=3 series will be $\sum_{n=1}^{\infty} \frac{3}{n}$ By p-series test ∑nt is cgl iff \$32 :. series is not get at x=3 thus, IOC is -5 = x < 3. Option (c) as true. Find the IOC of power series $\sum_{n=1}^{\infty} \frac{1}{(-3)^{n+2}} \frac{(4\chi - 12)^n}{n^2 + 1} \cdot \left\{ \left[J_n m - 2017 \right] \right\}$ a) $\frac{10}{4} \le x \le \frac{14}{4}$ b) $\frac{10}{4} \le x \le \frac{14}{4}$ c) $\frac{9}{4} \le x \le \frac{15}{4}$. $\sum_{n=1}^{\infty} \frac{1}{(-3)^{n+2}} \frac{4^n (x-3)^n}{n^2+1} = \sum_{n=1}^{\infty} \frac{4^n (x-3)^n}{9 (-3)^n (n^2+1)}$ an = $\frac{1}{9} \left(-\frac{4}{3} \right)^n \cdot \frac{1}{n^2 + 1}$ $l = \lim_{n \to \infty} \sup |a_n|^{\gamma_n} = \frac{1}{q} \left(\frac{-\gamma}{3}\right)^n \frac{1}{n^{2+1}} \left| \frac{\gamma_n}{n^{2+1}} \right|^{\gamma_n}$ $= \frac{4 \cdot 9t}{3} \frac{3uh}{n-\infty} \left| \frac{1}{(9)^{1/n}} \frac{1}{(n^2+1)^{1/n}} \right| = \frac{4 \cdot 9t}{3} \frac{1}{n-\infty} \left| \frac{1}{(9)^{1/n}} \frac{1}{n^{2/n}(1+\frac{1}{n^2})^{1/n}} \right|$ as $\lim_{n\to\infty} (a)^{1/n} = 1$ $\therefore l = \frac{4}{3} \implies \left| R = \frac{3}{u} \right|$

12-31 < R => 12-31 < 3 => 9 4 < x < 15 Now at $\frac{9}{4} = x$, servis will be $\sum_{n=1}^{\infty} \frac{(-3)^n}{(-3)^{n+3}} \cdot \frac{1}{n^2+1} = \sum_{n=1}^{\infty} \frac{1}{9(n^2+1)}$ (gt. IOC at $\chi = 15$ series will be $\sum_{q} \frac{(-1)^{q}}{n^{2}+1}$ which is cgt by leibnitz's lest

IOC will be 9 < x < 15 So, option (D) Do correct.

Note: (i) If a power series [an x" converges for x= a-then it is absolutely convergent for every $\pi = \chi_1$ when $|\tau_1| \leq |\alpha|$. (ii) Ya power series [anx" diverges for n = x' then it or adiv for every $x = x^{9}$ when $|x^{9}| > |x^{9}|$. + x s,t. |x-x0| < |α-x0| Let (an) be a sequence of Real numbers s.t. the series [an(x-2) Converges at $\chi = -5$, then Etrois series also Converges cet. 3 [JAM-2] a) $\chi = -6$, b) = 12 c) $\chi = 9$ d) $\chi = 5$:. | x-x0| ≥ | x-x0| =) |x-21 > 1-5-21 => 1x-21 > 1-71 only $\chi = 5$ is $\in (-5,9)$ => 1x-2177 => [-5 < 2 < 4] cgt. .. option (d) ès true.

The state of the s

think it is a second of the se